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Abstract—Computer-system logs often contain high volumes of 

interesting, useful information, and are an important data 

source for network security analysis. In this paper, we propose 

a distributed log stream processing system consisting of three 

main parts: log collection module, log transmission module and 

log statistics module. The system uses several open source 

technologies, not only supports multi-source heterogeneous log 

collection, but also provides near-real-time online statistics for 

log stream and offline statistics for massive log. In addition, we 

adopt a layered architecture in the log collection module, and 

accomplish a reliable Kafka consumer to get higher scalability 

as well as reliability. Using log entries generated by the 

network security platform as data source to do experiment, 

demonstrates that the proposed system is an effective and 

practical log stream processing system. 
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Scalability 

I.  INTRODUCTION 

Log comes from Internet surfing, application system such 
as cloud computing services, network monitor system, sensor 
networks, etc. and network devices, with the characteristics 
of huge volume, heterogeneity and low value density. There 
are two forms of log: log records from the log file and log 
stream. Log stream is continuously, time-varying sequence 
of tuples generated by application system that records events 
occurring during its use. 

Logs are an important data source for academic research 
and business analysis. They are always used for security 
applications, such as detecting breaches or misbehavior, and 
for performing postmortem inspection of security incidents 
[1]. Depending on the system and the threat model, logs of 
nearly any kind might be amenable to security analysis [19]: 
logs related to firewalls, login sessions, resource utilization, 
system calls, network flows, etc. 

Traditionally these logs are collected and stored in some 
sort of a data store just as relational databases and then are 
processed to find any interesting and useful information. 
Unfortunately, the method mentioned above isn’t always 
adequate to support long-term, large-scale analytics for 

several reasons [2]: firstly, when the volume and velocity of 
the data grow at unprecedented rates, traditional relational 
databases either do not support such volumes or face 
performance issues (see [3] for a comparison of the database 
size limits). Secondly, performing analytics and complex 
queries on large, unstructured datasets with incomplete and 
noisy features was inefficient. Finally, the management of 
large data warehouses has traditionally been expensive, and 
their deployment usually requires strong business cases. As a 
result, when traditional data storage and analysis approaches 
fail to meet the expectations of log analysis in the era of big 
data, it becomes necessary to adapt new technologies, 
namely, big data technologies, to be able to cope with these 
problems. 

This paper outlines the architecture and implementation 
of a novel, distributed, and scalable log data collection, 
storage and analysis system, based on modern big data 
technologies. The distributed log stream processing system 
we present below uses open source technologies: Flume, 
Kafka, Storm, HDFS, Hive, supports multi-source log 
collection, near-real-time online statistics and offline 
statistics for massive log. 

The remainder of the paper is structured as follows: in 
the next section, we make a brief introduction of the open 
source technologies involved in this paper. The third section 
presents the distributed log stream processing system by 
explaining its architecture and components. Then we give a 
use case for it. The last section contains a conclusion. 

II. BACKGROUND, RELATED CONCEPTS,AND 

TECHNOLOGIES 

A. Flume 

Flume [4] is a distributed, reliable, and available service 
for efficiently collecting, aggregating, and moving large 
amounts of log data. It has a simple and flexible architecture 
based on streaming data flows. It is robust and fault tolerant 
with tunable reliability mechanisms and many failover and 
recovery mechanisms.  

A Flume agent is a JVM process which has three 
components: source, channel and sink. A Flume source 



consumes events delivered to it by an external source like a 
web server. The external source sends events to Flume in a 
format that is recognized by the target Flume source. When a 
Flume source receives an event, it stores it into one or more 
channels. The channel is a passive store that keeps the event 
until it’s consumed by a Flume sink. The two most common 
types of channel are file channel and memory channel. The 
sink removes the event from the channel and puts it into an 
external repository like HDFS or forwards it to the Flume 
source of the next Flume agent in the flow. 

B. Kafka 

Kafka [5] is a distributed, scalable streaming platform, 
used for building real-time data pipelines and streaming apps. 
It is horizontally scalable, fault-tolerant, wicked fast, and 
runs in production in thousands of companies. 

In Kafka, a stream of messages of a particular type is 
defined by a topic. A producer can publish messages to a 
topic. The published messages are then stored at a set of 
servers called brokers. A consumer can subscribe to one or 
more topics from the brokers, and consume the subscribed 
messages by pulling data from the brokers. Since Kafka is 
distributed in nature, a Kafka cluster typically consists of 
multiple brokers. To balance load, a topic is divided into 
multiple partitions and each broker stores one or more of 
those partitions. Multiple producers and consumers can 
publish and retrieve messages at the same time. 

C. Storm 

Apache Storm [6] is a free and open source distributed 
real-time computation system. It makes it easy to reliably 
process unbounded streams of data, doing for real-time 
processing what Hadoop did for batch processing.  

The logic for a real-time application is packaged into a 
Storm topology. A Storm topology is represented by directed 
acyclic graphs (DAG), where vertices, called processing 
elements (Spout or Bolt), represent operators, and edges, 
called streams, represent the data flow from one PE to the 
next. For scalability, streams are partitioned into sub-streams 
and processed in parallel on a replica of the PE called 
processing element instance. 

D. Hadoop 

The Apache Hadoop [7] software library is a framework 
that allows for the distributed processing of large data sets 
across clusters of computers using simple programming 
models. It is built on lots of cheap hardware devices, but has 
the feature of high reliability and good extensibility. The key 
technologies of Hadoop are Hadoop Distributed File System 
(HDFS) which is the open source version of Google File 
System [8], MapReduce program model and HBase 
distributed database.  

HDFS is to store huge amounts of information, scale up 
incrementally and survive the failure of significant parts of 
the storage infrastructure without losing data. Hadoop is 
ideal for storing large amounts of data, like terabytes and 
petabytes, using HDFS as its storage system. 

Apache Hive [9] is an open-source data warehouse 
system for querying and analyzing large datasets stored in 

HDFS files. HiveQL is the Hive query language, similar to 
the other SQL dialects in widespread use. 

III. SYSTEM ARCHITECTURE 

In this paper, we have developed a distributed log stream 
processing system using the aforementioned technologies. 
The system uses open source software and supports multi-
source log collection, near-real-time online statistics and 
offline statistics for massive log. 

The overview of the proposed system is illustrated in 
Figure 1. The system architecture consists of five main parts: 
log data collection module, log transmission module, log 
statistics module, log storage module and display module. 

 
 

Figure 1.  System architecture. 

The system has the following characteristics: 

• Availability: by adopting distributed architecture, 
partial nodes downtime do not affect the availability 
of the whole system. 

• Reliability: it uses message queuing Kafka to ensure 
reliable transmission of messages. Beyond that, we 
design a reliable consumer which makes sure that 
the message is transmitted exactly once without lost 
nor re-transmission. 

• Scalability: using Kafka as the transmission module 
makes the coupling between log collection module 
and statistics module lower and easy to scale out; it 
is convenient to add and remove log collection nodes 
to accommodate changes of front-end servers that 
generate logs; the log transmission module as well as 
statistics module can scale out easily by increasing 
the number of server nodes to improve the 
processing capability of the entire system. 

• High performance: the system lets you produce, 
consume logs and make statistics with high 
throughput, low latency. 

A. Log Collection Module 

Nowadays, systems become increasingly composed of 
many, often distributed, components, using a single log file 
to monitor events from different parts of the system is 
difficult. In some scenarios, logs from entirely different 
systems must be cross-correlated for analysis. On the other 
hand, the size of logs has become bigger and bigger that the 
issues of collecting and storing them instantly is a big 
challenge. As a result, any of the existing centralized 
architectures is not competent. In the proposed system, we 
use Flume which is an open source distributed service for 
efficiently collecting large amounts of log data as the 
collection module. 



In the project, we need to deploy the Flume Agent on 
each front-end server that generates log data, responsible for 
collecting log in real time, and sending it to the Kafka cluster 
as a producer. 

If not adopting layered architecture, there exists the 
following problems: supposing that the number of front-end 
node is large, they are distributed in different network 
segments, belong to different business and should send log 
data to different topic in Kafka cluster, all the Flume agent 
deployed in the same layer will make it difficult for group 
management; when the Kafka cluster is shut down for restart 
or upgrade, it is necessary to inform every business side to 
do a good job in response, resulting in poor scalability. 
Fortunately, as shown below, we adopt a layered architecture. 

The first layer is the log acquisition layer. Flume Agent is 
deployed on each front-end server, responsible for collecting 
log data in real time, and sending it to the second layer. For 
the Flume agent, which source is used depends on the 
specific business, the channel type is memory channel and 
the sink type is Avro sink in order to connect to the Avro 
source on the second tier. 

The second layer is the log convergence layer. Flume 
agent is deployed on each aggregation node whose number is 
less than the front-end server and receives the log data from 
the acquisition layer then sends it to Kafka. The source type 
is Avro source. In order to avoid data loss caused by Kafka 
broker failure, it is necessary to cache log data and improve 
the stability as much as possible. Clearly, file channel is the 
best choice. The sink type is Kafka sink. 

In addition, the L1 layer can be configured with sink 
group, using the failover mechanism to get higher reliability 
and stability. 

 
Figure 2.  Flume’s layered architecture diagram. 

B. Log Transmission Module 

The log transmission module is located between the 
collection module and the statistics module, lowering the 
coupling. If a module fails, the other module can provide 
services normally to ensure the high availability of the 
system. Besides, it is responsible for caching the log data 
receiving from Flume agent, thus supporting processing data 
asynchronously as well as reducing the peak value of the 
traffic. Here, we use Kafka as the transmission module. 
Flume, as a producer, pushes log into the appropriate topic, 
and Hadoop as well as Storm as consumers pull data from 

Kafka to perform offline analysis or online real-time 
statistics. 

A message queuing system should be highly available 
and support high concurrency, and what's more, it has to 
ensure the reliable transmission of data. However, the 
consumer API provided by Kafka stores the log data 
separately from offset, so cannot guarantee that a message is 
delivered once and only once, which is what people actually 
want. Therefore, this paper presents a reliable consumer 
design, the HadoopConsumer function module in the system. 
The solution is based on Kafka's low-level API, and makes 
the log data consuming from Kafka brokers as well as offset 
stored in HDFS. 

There are three possible message delivery guarantees that 
could be provided between producer and consumer[5]: at 
most once--messages may be lost but are never redelivered, 
at least once--messages are never lost but may be redelivered, 
exactly once--this is what people actually want, each 
message is delivered once and only once, which is not 
guaranteed by Kafka at present. In Kafka, offset is controlled 
by the consumer itself. A consumer reads some messages, 
then processes them, finally updates the offset value storing 
in ZooKeeper or specific topic. It has several options for 
processing the messages and updating the offset, and of 
course, different option leads to different reliability. You can 
view the official website [10]  to learn more.  

The HadoopConsumer module is designed and 
implemented based on Kafka low-level API as well as HDFS 
API. It reads the configuration file to obtain the topic list to 
be consumed and IP address of Kafka brokers, then creates a 
thread for each partition as a consumer to read messages, 
finally appends messages to specific file in HDFS, while 
writing the most up-to-date offset value to file. The module 
consists of two Java JAR files: DataGenerator.jar is invoked 
only for the first time when running HadoopConsumer to 
complete a series of initialization work; KafkatoHDFS.jar is 
responsible for consuming and appending messages to HDFS, 
finally rewriting the offset.dat file. 

DataGenerator creates the following files for each 
partition of each topic: 

• A file named offset.dat: it contains the following 
items: topic, partition id, IP address and port of the 
leader broker, as well as the offset. The initial value 
of offset is -1, indicating that the consumer reads 
messages from the very beginning. 

• A file named message.txt: it stores messages reading 
from Kafka. Because HDFS does not support 
appending messages one by one, we write the data to 
a local file, then append the entire file to message.txt. 

The following figure shows the output of 
HadoopConsumer module: it describes that the consumer 
started consuming from the 2783th message of partition 0 of 
the topic named bigdata; the IP address of leader broker was 
192.168.11.179; the offset range was 2783-2783, which 
means that no message was read and consumption was faster 
than production; then HadoopConsumer wrote messages to a 
local file and appended the entire file to HDFS, finally set 
offset to the most up-to-date value for continuing 
consumption next time. 



 
Figure 3.  The Output of HadoopConsumer Module. 

C. Log Statistics Module 

Major function of this module is reading messages from 
the messaging system Kafka as a consumer, then processing 
each log record, and writing statistics result to the storage 
module. It includes two parts: near-real-time online statistics 
and offline batch processing. We use Storm for real-time 
streaming computation and HDFS as well as Hive for offline 
statistics. 

In Storm, we write code to package the logic of an 
application into a Storm topology. A topology is a graph of 
spouts and bolts that are connected with stream groupings. A 
spout is a source of streams, here, KafkaSpout is used to pull 
log data from brokers. Bolt handles tuples receiving from 
spout or other bolts ahead of it. It can do anything from 
filtering, functions, aggregations, joins, talking to databases, 
and more. In the following example, the bolts perform 
counting over sliding windows and outputting results to 
Oracle database. In the last step, we use WebSocket for 
interface display. 

In addition to real-time online statistics, there is also a 
need for offline statistics for massive log in the project. 
These application scenarios are less stringent on timeliness, 
but need to aggregate large amounts of historical data for 
statistics, thus generate reports. In the proposed system, a 
module named HadoopConsumer is implemented based on 
Kafka low-level API as well as HDFS API, which acts as a 
data channel between Kafka and HDFS to pull log messages 
from Kafka and then write them to files in HDFS. All we 
need to do is writing correct HQL statement for the queries.  

IV. EXPERIMENT RESULTS AND ANALYSIS 

In this experiment, we use the proposed system to collect 
and analyze log entries formatted as table 1 generated by the 
network security platform. The rate at which logs are 
generated is about 10 million every 5 minutes. Next, we 
mainly present the performance of the online statistics 
module. 

TABLE I.  LOG ENTRY 

 
 
 

The experiment was performed on a cluster consisting of 
12 machines each with 16GB of RAM and Intel Xeon E5-
2620v2 CPU. Flume and Oracle database are deployed on 
the same three servers. And Kafka as well as Storm's cluster 

both consist of three machines. The other three computers 
form Hadoop cluster, on which ZooKeeper is also deployed. 
One computer of Hadoop cluster plays the role of 
NameNode, and the other two are DataNode. One computer 
in Storm cluster is Nimbus node and the remaining servers 
are supervisor node. All the servers are managed and 
monitored in Cloudra. 

The operating state of the Storm cluster is as shown in 
Figure 4 and Figure 5. Figure 4 presents that CPU utilization 
of the Storm cluster maintains a relatively stable state. It 
means the deployed cluster can meet operation requirements 
of the log statistics program. Particularly, the inflection point 
in the graph is because of garbage collection of JVM. Figure 
5 shows the throughput of Storm changes over time, which is 
about 32701 log records per second. 

 
Figure 4.  CPU Status. 

 
Figure 5.  The Throughput of Storm. 

V. CONCLUSION 

In this paper, we demonstrated the architecture for a 
distributed log stream processing system, that supports multi-
source heterogeneous log collection, near-real-time online 
statistics for log stream and offline statistics for massive log. 
The architecture can be scaled to support a large number of 
front-end servers that generate logs and huge data size. We 
deploy the system on a cluster consisting of 12 servers and 
use it to collect and analyze log entries generated by the 
network security platform in our laboratory. The test results 
present that the proposed system does a good job. More 
importantly, we prove that open source technologies as well 
as big data frameworks can be utilized for large-scale log 
data analysis. 
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