
A High Throughput Distributed Log Stream Processing System

for Network Security Analysis

Jingfen Zhao, Peng Zhang, Yong Sun,

Qingyun Liu, Guolin Tan

Institute of Information Engineering, Chinese Academy

of Science

National Engineering Laboratory for Information

Security Technologies

Beijing China

E-mail: {zhaojingfen, tanguolin}@iie.ac.cn

Zhengmin Li

National Computer Network Emergency Response and

Coordination Center

Institute of Information Engineering, Chinese Academy

of Science

Beijing, China

E-mail: lizhengmin@cert.org.cn

Abstract—Computer-system logs often contain high volumes of

interesting, useful information, and are an important data

source for network security analysis. In this paper, we propose

a distributed log stream processing system consisting of three

main parts: log collection module, log transmission module and

log statistics module. The system uses several open source

technologies, not only supports multi-source heterogeneous log

collection, but also provides near-real-time online statistics for

log stream and offline statistics for massive log. In addition, we

adopt a layered architecture in the log collection module, and

accomplish a reliable Kafka consumer to get higher scalability

as well as reliability. Using log entries generated by the

network security platform as data source to do experiment,

demonstrates that the proposed system is an effective and

practical log stream processing system.

Keywords-Log Stream; Security Analysis; Big Data;

Scalability

I. INTRODUCTION

Log comes from Internet surfing, application system such
as cloud computing services, network monitor system, sensor
networks, etc. and network devices, with the characteristics
of huge volume, heterogeneity and low value density. There
are two forms of log: log records from the log file and log
stream. Log stream is continuously, time-varying sequence
of tuples generated by application system that records events
occurring during its use.

Logs are an important data source for academic research
and business analysis. They are always used for security
applications, such as detecting breaches or misbehavior, and
for performing postmortem inspection of security incidents
[1]. Depending on the system and the threat model, logs of
nearly any kind might be amenable to security analysis [19]:
logs related to firewalls, login sessions, resource utilization,
system calls, network flows, etc.

Traditionally these logs are collected and stored in some
sort of a data store just as relational databases and then are
processed to find any interesting and useful information.
Unfortunately, the method mentioned above isn’t always
adequate to support long-term, large-scale analytics for

several reasons [2]: firstly, when the volume and velocity of
the data grow at unprecedented rates, traditional relational
databases either do not support such volumes or face
performance issues (see [3] for a comparison of the database
size limits). Secondly, performing analytics and complex
queries on large, unstructured datasets with incomplete and
noisy features was inefficient. Finally, the management of
large data warehouses has traditionally been expensive, and
their deployment usually requires strong business cases. As a
result, when traditional data storage and analysis approaches
fail to meet the expectations of log analysis in the era of big
data, it becomes necessary to adapt new technologies,
namely, big data technologies, to be able to cope with these
problems.

This paper outlines the architecture and implementation
of a novel, distributed, and scalable log data collection,
storage and analysis system, based on modern big data
technologies. The distributed log stream processing system
we present below uses open source technologies: Flume,
Kafka, Storm, HDFS, Hive, supports multi-source log
collection, near-real-time online statistics and offline
statistics for massive log.

The remainder of the paper is structured as follows: in
the next section, we make a brief introduction of the open
source technologies involved in this paper. The third section
presents the distributed log stream processing system by
explaining its architecture and components. Then we give a
use case for it. The last section contains a conclusion.

II. BACKGROUND, RELATED CONCEPTS,AND

TECHNOLOGIES

A. Flume

Flume [4] is a distributed, reliable, and available service
for efficiently collecting, aggregating, and moving large
amounts of log data. It has a simple and flexible architecture
based on streaming data flows. It is robust and fault tolerant
with tunable reliability mechanisms and many failover and
recovery mechanisms.

A Flume agent is a JVM process which has three
components: source, channel and sink. A Flume source

consumes events delivered to it by an external source like a
web server. The external source sends events to Flume in a
format that is recognized by the target Flume source. When a
Flume source receives an event, it stores it into one or more
channels. The channel is a passive store that keeps the event
until it’s consumed by a Flume sink. The two most common
types of channel are file channel and memory channel. The
sink removes the event from the channel and puts it into an
external repository like HDFS or forwards it to the Flume
source of the next Flume agent in the flow.

B. Kafka

Kafka [5] is a distributed, scalable streaming platform,
used for building real-time data pipelines and streaming apps.
It is horizontally scalable, fault-tolerant, wicked fast, and
runs in production in thousands of companies.

In Kafka, a stream of messages of a particular type is
defined by a topic. A producer can publish messages to a
topic. The published messages are then stored at a set of
servers called brokers. A consumer can subscribe to one or
more topics from the brokers, and consume the subscribed
messages by pulling data from the brokers. Since Kafka is
distributed in nature, a Kafka cluster typically consists of
multiple brokers. To balance load, a topic is divided into
multiple partitions and each broker stores one or more of
those partitions. Multiple producers and consumers can
publish and retrieve messages at the same time.

C. Storm

Apache Storm [6] is a free and open source distributed
real-time computation system. It makes it easy to reliably
process unbounded streams of data, doing for real-time
processing what Hadoop did for batch processing.

The logic for a real-time application is packaged into a
Storm topology. A Storm topology is represented by directed
acyclic graphs (DAG), where vertices, called processing
elements (Spout or Bolt), represent operators, and edges,
called streams, represent the data flow from one PE to the
next. For scalability, streams are partitioned into sub-streams
and processed in parallel on a replica of the PE called
processing element instance.

D. Hadoop

The Apache Hadoop [7] software library is a framework
that allows for the distributed processing of large data sets
across clusters of computers using simple programming
models. It is built on lots of cheap hardware devices, but has
the feature of high reliability and good extensibility. The key
technologies of Hadoop are Hadoop Distributed File System
(HDFS) which is the open source version of Google File
System [8], MapReduce program model and HBase
distributed database.

HDFS is to store huge amounts of information, scale up
incrementally and survive the failure of significant parts of
the storage infrastructure without losing data. Hadoop is
ideal for storing large amounts of data, like terabytes and
petabytes, using HDFS as its storage system.

Apache Hive [9] is an open-source data warehouse
system for querying and analyzing large datasets stored in

HDFS files. HiveQL is the Hive query language, similar to
the other SQL dialects in widespread use.

III. SYSTEM ARCHITECTURE

In this paper, we have developed a distributed log stream
processing system using the aforementioned technologies.
The system uses open source software and supports multi-
source log collection, near-real-time online statistics and
offline statistics for massive log.

The overview of the proposed system is illustrated in
Figure 1. The system architecture consists of five main parts:
log data collection module, log transmission module, log
statistics module, log storage module and display module.

Figure 1. System architecture.

The system has the following characteristics:

• Availability: by adopting distributed architecture,
partial nodes downtime do not affect the availability
of the whole system.

• Reliability: it uses message queuing Kafka to ensure
reliable transmission of messages. Beyond that, we
design a reliable consumer which makes sure that
the message is transmitted exactly once without lost
nor re-transmission.

• Scalability: using Kafka as the transmission module
makes the coupling between log collection module
and statistics module lower and easy to scale out; it
is convenient to add and remove log collection nodes
to accommodate changes of front-end servers that
generate logs; the log transmission module as well as
statistics module can scale out easily by increasing
the number of server nodes to improve the
processing capability of the entire system.

• High performance: the system lets you produce,
consume logs and make statistics with high
throughput, low latency.

A. Log Collection Module

Nowadays, systems become increasingly composed of
many, often distributed, components, using a single log file
to monitor events from different parts of the system is
difficult. In some scenarios, logs from entirely different
systems must be cross-correlated for analysis. On the other
hand, the size of logs has become bigger and bigger that the
issues of collecting and storing them instantly is a big
challenge. As a result, any of the existing centralized
architectures is not competent. In the proposed system, we
use Flume which is an open source distributed service for
efficiently collecting large amounts of log data as the
collection module.

In the project, we need to deploy the Flume Agent on
each front-end server that generates log data, responsible for
collecting log in real time, and sending it to the Kafka cluster
as a producer.

If not adopting layered architecture, there exists the
following problems: supposing that the number of front-end
node is large, they are distributed in different network
segments, belong to different business and should send log
data to different topic in Kafka cluster, all the Flume agent
deployed in the same layer will make it difficult for group
management; when the Kafka cluster is shut down for restart
or upgrade, it is necessary to inform every business side to
do a good job in response, resulting in poor scalability.
Fortunately, as shown below, we adopt a layered architecture.

The first layer is the log acquisition layer. Flume Agent is
deployed on each front-end server, responsible for collecting
log data in real time, and sending it to the second layer. For
the Flume agent, which source is used depends on the
specific business, the channel type is memory channel and
the sink type is Avro sink in order to connect to the Avro
source on the second tier.

The second layer is the log convergence layer. Flume
agent is deployed on each aggregation node whose number is
less than the front-end server and receives the log data from
the acquisition layer then sends it to Kafka. The source type
is Avro source. In order to avoid data loss caused by Kafka
broker failure, it is necessary to cache log data and improve
the stability as much as possible. Clearly, file channel is the
best choice. The sink type is Kafka sink.

In addition, the L1 layer can be configured with sink
group, using the failover mechanism to get higher reliability
and stability.

Figure 2. Flume’s layered architecture diagram.

B. Log Transmission Module

The log transmission module is located between the
collection module and the statistics module, lowering the
coupling. If a module fails, the other module can provide
services normally to ensure the high availability of the
system. Besides, it is responsible for caching the log data
receiving from Flume agent, thus supporting processing data
asynchronously as well as reducing the peak value of the
traffic. Here, we use Kafka as the transmission module.
Flume, as a producer, pushes log into the appropriate topic,
and Hadoop as well as Storm as consumers pull data from

Kafka to perform offline analysis or online real-time
statistics.

A message queuing system should be highly available
and support high concurrency, and what's more, it has to
ensure the reliable transmission of data. However, the
consumer API provided by Kafka stores the log data
separately from offset, so cannot guarantee that a message is
delivered once and only once, which is what people actually
want. Therefore, this paper presents a reliable consumer
design, the HadoopConsumer function module in the system.
The solution is based on Kafka's low-level API, and makes
the log data consuming from Kafka brokers as well as offset
stored in HDFS.

There are three possible message delivery guarantees that
could be provided between producer and consumer[5]: at
most once--messages may be lost but are never redelivered,
at least once--messages are never lost but may be redelivered,
exactly once--this is what people actually want, each
message is delivered once and only once, which is not
guaranteed by Kafka at present. In Kafka, offset is controlled
by the consumer itself. A consumer reads some messages,
then processes them, finally updates the offset value storing
in ZooKeeper or specific topic. It has several options for
processing the messages and updating the offset, and of
course, different option leads to different reliability. You can
view the official website [10] to learn more.

The HadoopConsumer module is designed and
implemented based on Kafka low-level API as well as HDFS
API. It reads the configuration file to obtain the topic list to
be consumed and IP address of Kafka brokers, then creates a
thread for each partition as a consumer to read messages,
finally appends messages to specific file in HDFS, while
writing the most up-to-date offset value to file. The module
consists of two Java JAR files: DataGenerator.jar is invoked
only for the first time when running HadoopConsumer to
complete a series of initialization work; KafkatoHDFS.jar is
responsible for consuming and appending messages to HDFS,
finally rewriting the offset.dat file.

DataGenerator creates the following files for each
partition of each topic:

• A file named offset.dat: it contains the following
items: topic, partition id, IP address and port of the
leader broker, as well as the offset. The initial value
of offset is -1, indicating that the consumer reads
messages from the very beginning.

• A file named message.txt: it stores messages reading
from Kafka. Because HDFS does not support
appending messages one by one, we write the data to
a local file, then append the entire file to message.txt.

The following figure shows the output of
HadoopConsumer module: it describes that the consumer
started consuming from the 2783th message of partition 0 of
the topic named bigdata; the IP address of leader broker was
192.168.11.179; the offset range was 2783-2783, which
means that no message was read and consumption was faster
than production; then HadoopConsumer wrote messages to a
local file and appended the entire file to HDFS, finally set
offset to the most up-to-date value for continuing
consumption next time.

Figure 3. The Output of HadoopConsumer Module.

C. Log Statistics Module

Major function of this module is reading messages from
the messaging system Kafka as a consumer, then processing
each log record, and writing statistics result to the storage
module. It includes two parts: near-real-time online statistics
and offline batch processing. We use Storm for real-time
streaming computation and HDFS as well as Hive for offline
statistics.

In Storm, we write code to package the logic of an
application into a Storm topology. A topology is a graph of
spouts and bolts that are connected with stream groupings. A
spout is a source of streams, here, KafkaSpout is used to pull
log data from brokers. Bolt handles tuples receiving from
spout or other bolts ahead of it. It can do anything from
filtering, functions, aggregations, joins, talking to databases,
and more. In the following example, the bolts perform
counting over sliding windows and outputting results to
Oracle database. In the last step, we use WebSocket for
interface display.

In addition to real-time online statistics, there is also a
need for offline statistics for massive log in the project.
These application scenarios are less stringent on timeliness,
but need to aggregate large amounts of historical data for
statistics, thus generate reports. In the proposed system, a
module named HadoopConsumer is implemented based on
Kafka low-level API as well as HDFS API, which acts as a
data channel between Kafka and HDFS to pull log messages
from Kafka and then write them to files in HDFS. All we
need to do is writing correct HQL statement for the queries.

IV. EXPERIMENT RESULTS AND ANALYSIS

In this experiment, we use the proposed system to collect
and analyze log entries formatted as table 1 generated by the
network security platform. The rate at which logs are
generated is about 10 million every 5 minutes. Next, we
mainly present the performance of the online statistics
module.

TABLE I. LOG ENTRY

The experiment was performed on a cluster consisting of
12 machines each with 16GB of RAM and Intel Xeon E5-
2620v2 CPU. Flume and Oracle database are deployed on
the same three servers. And Kafka as well as Storm's cluster

both consist of three machines. The other three computers
form Hadoop cluster, on which ZooKeeper is also deployed.
One computer of Hadoop cluster plays the role of
NameNode, and the other two are DataNode. One computer
in Storm cluster is Nimbus node and the remaining servers
are supervisor node. All the servers are managed and
monitored in Cloudra.

The operating state of the Storm cluster is as shown in
Figure 4 and Figure 5. Figure 4 presents that CPU utilization
of the Storm cluster maintains a relatively stable state. It
means the deployed cluster can meet operation requirements
of the log statistics program. Particularly, the inflection point
in the graph is because of garbage collection of JVM. Figure
5 shows the throughput of Storm changes over time, which is
about 32701 log records per second.

Figure 4. CPU Status.

Figure 5. The Throughput of Storm.

V. CONCLUSION

In this paper, we demonstrated the architecture for a
distributed log stream processing system, that supports multi-
source heterogeneous log collection, near-real-time online
statistics for log stream and offline statistics for massive log.
The architecture can be scaled to support a large number of
front-end servers that generate logs and huge data size. We
deploy the system on a cluster consisting of 12 servers and
use it to collect and analyze log entries generated by the
network security platform in our laboratory. The test results
present that the proposed system does a good job. More
importantly, we prove that open source technologies as well
as big data frameworks can be utilized for large-scale log
data analysis.

ACKNOWLEDGMENT

<IP address of the host,Configuration ID, StartTime, Interval>

<192.168.11.34,1019491,157892,300>

Project supported by National Key R&D Program 2016
(2016YFB0801300) and National Natural Science
Foundation of China (61402464, 61402474).

REFERENCES

[1] Oliner A, Ganapathi A, Xu W. Advances and challenges in log
analysis [J]. Communications of the Acm, 2012, 55(2):55-61.

[2] Cardenas A A, Manadhata P K, Rajan S P. Big Data Analytics for
Security [J]. IEEE Security & Privacy, 2013, 11(6):74-76.

[3] Comparison of Relational Database Systems, http://en.wikipedia.org/
wiki/Comparison of relational database management System.

[4] Apache Flume http://flume.apache.org/ Retrieved: Jul, 2016.

[5] Kreps J, Narkhede N, Rao J. Kafka: A distributed messaging system
for log processing[C]//Proceedings of the NetDB. 2011: 1-7.

[6] Storm wiki. 2016. http://en.wikipedia.org/wiki/Storm.

[7] Official Hadoop WebSite, 2016, http://hadoop.apache.org/.

[8] S. Ghemawat, H. Gobioff, and S. T. Leung, “The google file system,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), pp. 29–43, October 2003.

[9] Official Hive WebSite, 2016, http://hive.apache.org/.

[10] Official Kafka WebSite, 2016, http://kafka.apache.org/.

[11] Logothetis D,Trezzo C,Webb KC, et al. In-situ MapReduce for Log
Processing[C]//Proceedings of USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2011:115–
129H.

[12] M.Cherniack, H.Balakrishnan,M.Balazinska,D.Carney,U. Cetintemel,
Y. Xing, and S. B. Zdonik. Scalable distributed stream processing. In
CIDR, volume 3, pp. 257–268, 2003.

[13] Patel D, Khasib F, Sadooghi I, et al. Towards In-Order and Exactly-
Once Delivery Using Hierarchical Distributed Message Queues[C]//
Ieee/acm International Symposium on Cluster, Cloud and Grid
Computing. 2014:883-892.

[14] Katsipoulakis N R, Thoma C, Gratta E A, et al. CE-Storm:
Confidential Elastic Processing of Data Streams[C]// ACM SIGMOD
International Conference on Management of Data. ACM, 2015:66-7.

[15] Aydin G, Hallac I R, Karakus B. Architecture and Implementation of
a Scalable Sensor Data Storage and Analysis System Using Cloud
Computing and Big Data Technologies [J]. Journal of Sensors, 2015.

[16] Yen T F, Oprea A, Onarlioglu K, et al. Beehive: Large-scale log
analysis for detecting suspicious activity in enterprise networks[C]//
Computer Security Applications Conference. 2013:199-208.

[17] Yu Fu, Hongcheng Li, Xiaoping Wu, Jiasheng Wang. Detecting APT
Attacks:a Survey from the Perspective of Big Data Analysis[J].
Journal on Communications, 2015, (11):1-14.

[18] Chuanyong Zhang. Analysis of Network Security Problem Based on
Large Data Age [J]. Network Security Technology & Application,
2015, (01):101+104.

[19] Kazuyoshi Furukawa, Satoru Shimizu, Masahiko Takenaka, and
Satoru Toriil, "On Detection for Scarcely Collided Super-Slow Port
Scannings in IDSs' Log-Data," Journal of Communications, vol. 8, no.
11, pp. 788-794, 2013. doi: 10.12720/jcm.8.11.788-794.

AUTHORS’ BACKGROUND

Your Name Title* Research Field Personal website

 Jingfen Zhao master student Network Security, Big Data

 Zhengmin Li Phd candidate Network Security, Big Data

 Peng Zhang associate professor Large-scale data stream real-time processing http://www.mesalab.cn/f/PersonnelTraining/t
oPersonDetail?id=6

 Yong Sun associate professor Network Security http://www.mesalab.cn/f/PersonnelTraining/t
oPersonDetail?id=47

 Qingyun Liu associate professor Network Security http://www.mesalab.cn/f/PersonnelTraining/t
oPersonDetail?id=3

 Guolin Tan Phd candidate Large-scale data stream real-time processing

*This form helps us to understand your paper better, the form itself will not be published.

*Title can be chosen from: master student, Phd candidate, assistant professor, lecture, senior lecture, associate professor,

full professor

